Max-Sum Diversity Via Convex Programming
نویسندگان
چکیده
Diversity maximization is an important concept in information retrieval, computational geometry and operations research. Usually, it is a variant of the following problem: Given a ground set, constraints, and a function f(·) that measures diversity of a subset, the task is to select a feasible subset S such that f(S) is maximized. The sum-dispersion function f(S) = ∑ x,y∈S d(x, y), which is the sum of the pairwise distances in S, is in this context a prominent diversification measure. The corresponding diversity maximization is the max-sum or sum-sum diversification. Many recent results deal with the design of constant-factor approximation algorithms of diversification problems involving sum-dispersion function under a matroid constraint. In this paper, we present a PTAS for the max-sum diversification problem under a matroid constraint for distances d(·, ·) of negative type. Distances of negative type are, for example, metric distances stemming from the `2 and `1 norms, as well as the cosine or spherical, or Jaccard distance which are popular similarity metrics in web and image search. Our algorithm is based on techniques developed in geometric algorithms like metric embeddings and convex optimization. We show that one can compute a fractional solution of the usually non-convex relaxation of the problem which yields an upper bound on the optimum integer solution. Starting from this fractional solution, we employ a deterministic rounding approach which only incurs a small loss in terms of objective, thus leading to a PTAS. This technique can be applied to other previously studied variants of the max-sum dispersion function, including combinations of diversity with linear-score maximization, improving the previous constant-factor approximation algorithms. 1998 ACM Subject Classification F.2.2 Geometrical problems and computations, I.3.5 Geometric algorithms, languages, and systems
منابع مشابه
Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملApplying Convex Integer Programming: Sum Multicoloring and Bounded Neighborhood Diversity
In the past 30 years, results regarding special classes of integer linear (and, more generally, convex) programs flourished. Applications in the field of parameterized complexity were called for and the call has been answered, demonstrating the importance of connecting the two fields. The classical result due to Lenstra states that solving Integer Linear Programming in fixed dimension is polyno...
متن کاملLearning Maximal Margin Markov Networks via Tractable Convex Optimization
Learning of Markov networks constitutes a challenging optimization problem. Even the predictive step of a general Markov network involves solving an NP-complete max-sum problem. By using the discriminative approach, learning of the Markov networks from noisy examples can be transformed to a convex quadratic program with intractably large number of linear constraints. The intractable quadratic p...
متن کاملOn max-k-sums
The max-k-sum of a set of real scalars is the maximum sum of a subset of size k, or alternatively the sum of the k largest elements. We study two extensions: First, we show how to obtain smooth approximations to functions that are pointwise max-k-sums of smooth functions. Second, we discuss how the max-k-sum can be defined on vectors in a finite-dimensional real vector space ordered by a closed...
متن کاملOn Coordinate Minimization of Convex Piecewise-Affine Functions
A popular class of algorithms to optimize the dual LP relaxation of the discrete energy minimization problem (a.k.a. MAP inference in graphical models or valued constraint satisfaction) are convergent message-passing algorithms, such as max-sum diffusion, TRW-S, MPLP and SRMP. These algorithms are successful in practice, despite the fact that they are a version of coordinate minimization applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016